Analysis and interpretation of the CFD results including a self-propulsion optimization

Michal Orych, 2019

Project Case

船体主尺度:

Lpp(m)	314.6
B(m)	52.5
T(m)	18.1
排水体积(m ³)	253000

螺旋桨参数 Propeller:

Diameter (m)	9.6
P/D (0.7R)	0.74
Ratio	0.498

Tools

- Rhinoceros3d
 - hull inspection
 - initial corrections
- CAESES
 - hull transformations
 - optimization methods
 - postprocessing
- SHIPFLOW 6.5
 - CFD simulations (resistance, self-propulsion)

Initial hull evaluation

Hull Shape Inspection

Wave pattern and hull Cp distribution

WAVE RESISTANCE presentation: 2_

Viscous Flow

Wake at the propeller plane

Streamlines

Streamlines

Streamlines

a flowtech product

"zero" velocity iso-surface

Limiting streamlines

Demo – postprocessing: 3_

Hull modification

Demo – fairing/fixing: 4_

Removing the imperfections of the initial hull

This has been done with Rhino 3D but can be done with any other CAD system

Cp distribution comparison

Effect on the wave pattern

Further modifications and flow changes

More slender stern

Wake comparison

Limiting streamlines comparison

Limiting streamlines comparison

Streamlines comparison

Integrated data

- Wave resistance:
 - smaller aft shoulder wave system
- Viscous pressure resistance:
 - No separation
 - thinner boundary layer (pressure recovery)
 - smaller bilge and secondary vortices
- Lower Wn

Results from SHIPFLOW (where to find the information)

In Design GUI or CAESES

Result Table

	0			
Π	10			
LPP	1			
Б	0.199715			
т	0.0613409			
WPA	0.178958			
CWPA	0.896067			
CB	0.739842			
CODICM	0.715136			
CERTISI				
LCB	0.504584			

HTML Report

config_REPORT/config_report.html

File structure: 6_

Resistance case

GUI:

baselii	ne: XCHAP	٤.
	0	٦
WVAR.	0.598286	
WRAD	1	
Wn	0.457932	
Wn_a	0.473302	
stdCPV	0.19	
stdCF	0	
Forcelog	111	
CF	0.002849	
CPV	0.0008863	
CV	0.003735	
CW	0.000269	
СТ	0.004004	
К	0.258	
S	0.2302	
_LPP	6.403	
_S	9.438	
_Displ	1.999	
_Vm_s	1.89	
_Lref	6.403	
_Fn	0.2385	
_Rn	1.063e+07	
_rho	999.1	
_nu	1.139e-06	
_9	9.807	
_RF	47.99	
_RV	62.92	
_RW	4.531	
_RT	67.45	

a bas	eline: XPAN 💽
	0
Π	8
LPP	1
в	0.178944
т	0.067567
WPA	0.149734
CWPA	0.836762
СВ	0.6298
CPRISM	0.656806
LCB	0.510252
VCB	-0.029856
S	0.23671
V	0.00761473
CW	0.000268987
CWTWC	0.000182142
Sref	0.230186
CZSINK	-0.04713
CMTRIM	-0.000754818
XCOF	0.549259
BML	1.31355
TRIMAN	-0.125917
ZSINK	-0.00216941
ZSINKF	-0.00206116
ZSINKB	-0.00326825
ZSINKS	-0.00107058

config_OUTPUT Requires propeller position and diameter definition				
- MAXIMUM WVAR (WRAD (1 TOTAL WAKE VARIATION maximum total wake va maximum found at radi	I, PROPELLER: Ariation)	ID1 : 0.598286 : 1	
- MEAN WA Wn (M	AKE FRACTION, PROPELLE Mean wake fraction for	ER: ID1 c ID1) : 0.4	57932	
- MEAN AX Wn_a (XIAL WAKE FRACTION, PH (Mean axial wake frac	OPELLER: ID1) : 0.473302	
- Resista	ance Coefficients:			
CF CPV CV CW CT	<pre>(Frictional resist. (Viscous pres. resis (Viscous resist. coef (Wave resist. coeff (Total resist. coeff</pre>	coeff.) st. coeff.) ≥ff.) .) f.)	: 2.849E-03 : 8.863E-04 : 3.735E-03 : 2.690E-04 : 4.004E-03	
K S	(Form factor) (Wetted surface / L'	**2)	: 0.258 : 0.2302	
=	SIN	ULATION SUMM	======================================	======
- HULL DA	 NTA:			
_LPP _S _Displ	(Model Lpp (Wetted area (Displacement	[m]) [m^2]) [m^3])	: 6.403E+00 : 9.438E+00 : 1.999E+00	
- CONDITI	CONS:			
_Vm_s _Lref _Fn _Rn _rho _nu _g	<pre>(Model speed (Reference length (Froude number (Reynolds number (Fluid density (Fluid viscos. (Gravity</pre>	[m/s]) [m]) [-]) [-]) [kg/m^3]) [m^2/s]) [m/s^2])	: 1.890E+00 : 6.403E+00 : 2.385E-01 : 1.063E+07 : 9.991E+02 : 1.139E-06 : 9.807E+00	
- RESISTA	ANCE:			
_RF _RV _RW _RT	(Frictional resista (Viscous resistance (Wave resistance (Total resistance	ance [N]) [N]) [N]) [N])	: 4.799E+01 : 6.292E+01 : 4.531E+00 : 6.745E+01	

SHIPFL a flowtech product

1

Self-propulsion case (1)

Self-propulsion case (2)

Requires ITTC command

Self-propulsion case (3)

a flowtech product

Other important files

id_RUN_DIR:

Flow field data at the propeller plane in html and csv file formats

Summary of wake data – selected examples from resistance

Summary of wake data – selected examples from selfpropulsion

PYTHON interface: 7_

Example large aft-body modification

Shape variations vs. Wake

To increase hull efficiency and avoid sudden changes of propeller loading the wake should be more circular and concentrated in propeller disc – however, this often leads to resistance increase

KVLCC2

a flowtech product

Patches - kvlcc2-aft-V.fdb

Wake development, x/Lpp=0.9

Wake development, x/Lpp=0.95

Wake development, x/Lpp=0.9825

Wake in the propeller disc

SHIPFLC a flowtech product

Circumferential wake distribution

a flowtech product

Numbers

	U	V	Comments
Ct	-	-2%	Good! Lower resistance.
Wn	-	-15%	Not so good. Lower nominal wake may result in lower propulsive efficiency.
WVAR	-	+25%	Not so good. Circumferential wake variation much higher. Larger vibrations, increased risk of cavitation in the wake peak.
PD	-	+/-0%	No improvement!

Things to consider for propulsion efficiency

- Bilge vortex strenght
- Bilge vortex position
- Shape of the wake
- Circumferential flow velocity variation

REPORT on GDS from JDP: 8_

Thank You

